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Abstract
1.	 Low-coverage whole-genome sequencing (WGS) is increasingly used for the study 

of evolution and ecology in both model and non-model organisms; however, ef-
fective application of low-coverage WGS data requires the implementation of 
probabilistic frameworks to account for the uncertainties in genotype likelihoods.

2.	 Here, we present a probabilistic framework for using genotype likelihoods for 
standard population assignment applications. Additionally, we derive the Fisher 
information for allele frequency from genotype likelihoods and use that to de-
scribe a novel metric, the effective sample size, which figures heavily in assign-
ment accuracy. We make these developments available for application through 
WGSassign, an open-source software package that is computationally efficient 
for working with whole-genome data.

3.	 Using simulated and empirical data sets, we demonstrate the behaviour of our as-
signment method across a range of population structures, sample sizes and read 
depths. Through these results, we show that WGSassign can provide highly ac-
curate assignment, even for samples with low average read depths (<0.01X) and 
among weakly differentiated populations.

4.	 Our simulation results highlight the importance of equalizing the effective sample 
sizes among source populations in order to achieve accurate population assign-
ment with low-coverage WGS data. We further provide study design recom-
mendations for population assignment studies and discuss the broad utility of 
effective sample size for studies using low-coverage WGS data.
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1  |  INTRODUC TION

In just a few years, next-generation sequencing (NGS) technolo-
gies have revolutionized the study of evolution and ecology in both 
model and non-model organisms, and have become established as 
standard tools in molecular ecology. In particular, whole-genome 
sequencing (WGS) can provide sequence data from a large propor-
tion of the genome and is increasing in use. While large-scale WGS 
projects can be prohibitively expensive at the necessary read depths 
for accurately calling individual genotypes, low-coverage WGS of-
fers a cost-effective approach aimed at reducing the read depth 
per individual while retaining sufficient information for genomic 
analyses. However, since low-coverage WGS precludes the ability 
to call individual genotypes, probabilistic frameworks are used to 
account for the uncertainty in an individual's genotype (Buerkle & 
Gompert, 2013; Nielsen et al., 2011). Extending common analyses 
in the field of molecular ecology to accommodate genotype uncer-
tainty through the direct use of genotype likelihoods is a necessary 
advance for broadening the utility of low-coverage WGS.

The creation of probabilistic frameworks for allele frequency es-
timation, genotype calling and single nucleotide polymorphism (SNP) 
calling have made low-coverage WGS practical for many applications 
(Kim et al., 2011; Nielsen et al., 2011, 2012). By first estimating the 
joint site frequency spectrum for individuals without calling individ-
ual genotypes, priors on allele frequency can improve the calling of 
individuals' genotypes and SNPs. Population genetic analyses have 
been further advanced through the development of methods that 
quantify genetic differentiation and investigate population structure 
with principal components analysis, while accounting for uncertain 
genotypes (Fumagalli et  al.,  2013). Similarly, accurate estimates of 
individual admixture proportions (Skotte et al., 2013) and pairwise 
relatedness (Korneliussen & Moltke,  2015) can be obtained using 
genotype likelihoods. The widespread use of these methods is fa-
cilitated by software that is both user-friendly and computationally 
efficient (e.g. ANGSD (Korneliussen et al., 2014), ngsTools (Fumagalli 
et al., 2014), PCangsd (Meisner & Albrechtsen, 2018)). However, a 
fundamental analysis for molecular ecology yet to be developed for 
low-coverage WGS data is population assignment.

Population assignment methods are used to determine an indi-
vidual's population of origin and have provided insight into ecological 
and evolutionary processes, such as dispersal, hybridization and mi-
gration, as well as informed conservation and management decisions 
(Manel et al., 2005). The traditional assignment test uses an individ-
ual's multilocus genotype and the source populations' allele frequen-
cies to calculate the likelihood of the genotype originating from each 
of the populations (Paetkau et al., 1995; Rannala & Mountain, 1997). 
Using this framework, the recent increase in available markers (e.g. 
from RADseq approaches) has made possible highly accurate as-
signment of individuals among weakly differentiated populations 
by using subsets of informative loci for population structure (e.g. 
Benestan et al., 2015; DeSaix et al., 2019; Ruegg et al., 2014). The 
traditional assignment test is readily extended to analyses such as 
genetic stock identification (GSI), to determine the proportion of 

source populations in a mixture of individuals Smouse et al., 1990. To 
date, methods for performing assignment tests require known gen-
otypes and have not been implemented to use genotype likelihoods.

Assignment tests are well suited for application with low-
coverage WGS data, because they rely heavily on allele frequency 
estimates, for which a number of approaches are already developed. 
However, a challenge with using low-coverage WGS data for assign-
ment tests is that the allele frequency estimates may be uncertain, 
which could lead to inaccurate assignment results. While this chal-
lenge is not unique to low-coverage WGS data, as low sample size 
also increases uncertainty regardless of sequencing coverage, the 
challenge of accurate allele frequency estimation is compounded 
for low-coverage WGS by low read depth. For accurate allele fre-
quency estimation from low-coverage WGS data, specific recom-
mendations include aiming for individual sequencing depths of 1x 
(Buerkle & Gompert,  2013) or having at least 10 individuals se-
quenced with a total per-population sequencing depth of at least 
10x (Lou et  al.,  2021). The goal of these strategies is to maximize 
information for estimating allele frequencies given finite resources 
for sequencing depth and number of samples. Lower sequencing 
depth decreases the amount of information about population allele 
frequency, while using larger sample sizes increases the amount of 
information. However, information is not directly quantified in these 
studies; rather comparison of known versus simulated allele fre-
quencies was used to arrive at these general rules of thumb (Buerkle 
& Gompert, 2013; Lou et al., 2021). The development of an infor-
mation metric that accounts for read depth variation across geno-
types would provide a valuable method to quantify the thresholds 
of information needed for parameter estimation with low-coverage 
WGS data. For population assignment tests, an information metric 
of this sort would allow researchers to more directly identify the 
necessary sample size and sequencing depth needed to perform ac-
curate assignment given the genetic differentiation of their samples. 
Furthermore, given that unequal sample size among reference pop-
ulations is a source of bias in assignment tests with called genotypes 
(Wang, 2017), an information metric would allow the identification 
and mitigation of biased assignment due to the combined influence 
of unequal sample sizes and sequencing depths among populations.

Here, we present WGSassign, an open-source software package 
of population assignment tools for genotype likelihood data from 
low coverage WGS. The objectives of WGSassign are (1) to provide 
common assignment methods that use genotype likelihoods, instead 
of called genotypes; (2) to evaluate the information available in low-
read depth sequencing data for allele frequency estimation; and (3) 
to achieve computational efficiency for processing large numbers of 
samples with genome-wide data. WGSassign provides methods for 
individual assignment and leave-one-out cross-validation of samples 
of known origin. Additionally, it calculates a z-score metric that can 
indicate when samples originate from an unsampled source pop-
ulation. For the second objective, we calculate Fisher information 
(Casella & Berger, 2021) and determine the effective sample size—the 
number of samples with completely observed genotypes that would 
yield the same amount of statistical information for estimating allele 
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frequency as the observed genotype likelihoods in a data set. This 
calculation of effective sample size has broad utility for population 
genomics studies using low-coverage WGS.

We validate WGSassign and investigate its behaviour with an 
extensive set of simulations and demonstrate its use on two empir-
ical data sets. In the first, we apply WGSassign to weakly differenti-
ated groups of yellow warblers (Setophaga petechia). In the second, 
we apply WGSassign to two well-differentiated Chinook salmon 
(Oncorhynchus tshawytscha) populations to demonstrate that when 
sufficient effective sample sizes of the source population are avail-
able, unknown individuals can be assigned accurately, even at ex-
tremely low read depths.

2  |  METHODS

WGSassign is written in Python 3 (https://​www.​python.​org/​) and 
requires the following modules: numpy (https://​numpy.​org/​), cython 
(https://​cython.​org/​) and scipy (https://​scipy.​org/​). Detailed instruc-
tions for using WGSassign are available at https://​github.​com/​mgdes​
aix/​WGSas​sign (DeSaix, 2023).

2.1  |  Population assignment

We assume that there are K sampled source populations to which 
an individual can be assigned using data from L biallelic loci in the 
genome. Let a diploid individual's genotype at locus � (1 ≤ � ≤ L) 
be represented by G

�
∈ {0,1,2}, which counts the number of alleles 

matching the reference genome carried by the individual at locus 
�. Denote by �k,� the true—but typically unknown—frequency of 
the alternate allele at locus � within source population k. Under the 
assumption of Hardy–Weinberg equilibrium, the probability of G

�
, 

when the individual is from population k is:

With low-coverage sequencing data, G
�
 is not observed with cer-

tainty. Rather, evidence about the unknown genotype is obtained 
from sequencing reads covering the locus. Let R

�
 denotes the se-

quencing read data from an individual at locus �. The evidence for 
the state of G

�
 from the read data is summarized as the likelihood 

of the genotype given the read data, which is simply the probability 
of the read data given the genotype, considered as a function of the 
genotype:

Without loss of generality, we consider these likelihoods to be scaled 
so that they sum to one: g

�,0 + g
�,1 + g

�,2 = 1. Such likelihoods are typ-
ically a function of the number of reads of each allele observed and 
the corresponding base quality scores, and they are computed during 
genotype calling by a variety of programmes such as bcftools (Li, 2011; 
Li et al., 2009), GATK (McKenna et al., 2010) and ANGSD (Korneliussen 
et al., 2014). An accessible review of the different models providing 
genotype likelihoods is found in Lou et al. (2021).

Performing population assignment using read data from an indi-
vidual (rather than from directly observed genotypes) requires, for 
each locus, �, the likelihood that the individual came from a source 
population k, say, given the individual's read data. This is simply the 
probability of the read data from the individual given that the individ-
ual came from source population k, with allele frequencies �k,�. Thus, 
we require P

(
R
�
| �k,�

)
, which can be calculated from Equations  (1) 

and (2) using the law of total probability:

If the L loci in the genome are not in linkage disequilibrium (LD) 
and are hence independent of one another, within source popula-
tions, then the likelihood of source population k given R, the read 
sequencing data across the entire genome, is simply the product 
over loci.

where �k denotes the set of all L allele frequencies in population 
k  . Of course, with WGS, some variants may be near one another 
and will then likely be in LD. In such a case, Equation (4) is not cor-
rect, but, rather, is a composite-likelihood approximation to the 
true likelihood (which is largely intractable). Composite likelihood 
estimators often produce unbiased results, but, because they do 
not take account of the dependence of different variables in the 
likelihood, they typically underestimate the uncertainty in the es-
timates (Larribe & Fearnhead, 2011). Given the unbiased nature of 
composite likelihood estimators, LD pruning of the WGS data is not 
necessary. For each individual of unknown origin, this likelihood 
can be computed for each source population, k, and the relative 
values of those likelihoods give the evidence that the individual 
came from each of the source populations. If the prior probabil-
ity �k that an individual came from source population k is available 
for k ∈ {1, … ,K}, then the likelihoods can be used to compute the 
posterior probability that the individual came from each of the 
source populations:

where Z is a random variable indicating the origin of the individual.

(1)P
�
G
�
��k,�

�
=

⎧
⎪⎪⎨⎪⎪⎩

�
1−�k,�

�2
if G

�
=0

2
�
�k,�

��
1−�k,l

�
if G

�
=1

�
�k,�

�2
if G

�
=2.

(2)
P
�
R
�
�G

�

�
=

⎧
⎪⎪⎨⎪⎪⎩

g
�,0 for G

�
=0

g
�,1 for G

�
=1

g
�,2 for G

�
=2.

(3)
P
(
R
�
| �k,�

)
=

2∑
G
�
=0

P
(
R
�
|G

�

)
P
(
G
�
| �k,�

)

=g
�,0

(
1−�k,�

)2
+g

�,12
(
�k,�

)(
1−�k,�

)
+g

�,2

(
�k,�

)2
.

(4)P
(
R| �k

)
=

L∏
�=1

P
(
R
�
| �k,�

)
,

(5)P
�
Z = k�R, �1, … , �K ,�1, … ,�K

�
=

�kP
�
R� �k

�
∑K

i=1
�kP

�
R� �k

� ,

 2041210x, 0, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14286, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.python.org/
https://numpy.org/
https://cython.org/
https://scipy.org/
https://github.com/mgdesaix/WGSassign
https://github.com/mgdesaix/WGSassign


4  |    DeSAIX et al.

In practice, the allele frequencies in each source population are 
not known with certainty. Accordingly, these frequencies must be 
estimated from sequencing read data from individuals known to be 
from the source populations (these are often referred to as ‘refer-
ence samples’). We estimate these by maximum likelihood. The 
probability of the read data, R(i)

�
, from the ith reference sample, given 

that it came from source population k, is, following Equation (3),

where the genotype likelihoods are now adorned with a superscript 
(i) to denote they are for the ith reference sample. Assuming the sam-
ples from source population k are not related, the log-likelihood for �k,� 
given the read data from all nk reference samples from population k is:

In our implementation, we first use the expectation–max-
imization algorithm (Dempster et  al.,  1977) from ANGSD (Kim 
et al., 2011) and the code as implemented in PCangsd (Meisner & 
Albrechtsen,  2018), to obtain the maximum likelihood estimates 
(MLEs) of the population allele frequencies, �̂k,�, from the reference 
samples. Then, when calculating P

(
R| �k

)
, we substitute �̃k,� for �k,�, 

calculated as follows:

where, again, nk is the number of reference samples from source pop-
ulation k. This provides a correction for cases in which the allele exists 
in a source population, but was not detected in the reference samples 
from that population—effectively, it adds one more individual to the 
sample that carries one copy of the allele not previously seen in that ref-
erence population. Without this correction, the P

(
R
(i)

�
| �k,�

)
= 0 in the 

absence of an allele and the L
(
�k,�

)
 cannot be calculated. This approach 

is identical to the ‘Frequency Criterion’ used in GENECLASS 2.0 with 
the ‘adjustable default value’ set to 1∕(2n + 1). Another approach, due 
to Rannala and Mountain (1997), that places beta priors, independently 
for each population and locus, on the allele frequencies, has also been 
widely used in population assignment methods. Implementing that ap-
proach with genotype likelihoods is more computationally challenging 
than with observed genotypes, and since extensive simulations (not 
shown) revealed no substantial differences between the two methods, 
we adopted the ‘Frequency Criterion’ approach.

2.2  |  Fisher information and effective sample size

As should be clear from the preceding development, the accuracy of 
population assignment depends, at least in part, on the accuracy of 
the estimates of the allele frequencies from each source population. 

In this section, we develop the theory (which is then implemented 
in WGSassign) that provides the user with a measure of allele fre-
quency estimate accuracy, calculated from the genotype likelihoods 
in the reference samples, that takes account of both sample size and 
read depth. We define this metric as the effective sample size: The 
number of diploid individuals with called genotypes that provide the 
same amount of information for allele frequency as the observed 
information from the low-coverage WGS samples. Fewer individuals 
sampled and lower sequencing depth will result in less information 
in the data regarding allele frequency.

As noted above, estimates of the allele frequencies are made 
by maximum likelihood using the sequencing data on the reference 
samples from each source population. Fisher information is a statis-
tical metric that quantifies the amount of information in a sample 
for estimating an unknown, continuous parameter (Fisher,  1922). 
It measures the curvature of the log-likelihood function and is in-
versely related to the variance. In visual terms, a sharply peaked 
log-likelihood curve (i.e. one with greater curvature) for a parame-
ter indicates greater certainty in the estimated parameter (and, also 
higher Fisher information) than a flatter log-likelihood function. 
Formally, the curvature is measured by the negative second deriv-
ative of the log-likelihood function. The observed Fisher information 
for allele frequency is that negative second derivative evaluated at 
the MLE:

Appendix A shows how I(i)o
(
�k,�

)
, the observed Fisher information for 

�k,� in the reads from a single individual, i , is found to be:

The observed Fisher information from all nk reference samples is then 
simply, Io

�
�k,�

�
=
∑nk

i=1
I
(i)
o

�
�k,�

�
.

To derive ñl, our effective sample size metric for locus �, we com-
pare this observed Fisher information to the expected Fisher infor-
mation that would be obtained from 2ñ

�
 gene copies with allelic type 

directly observed (Appendix A) from a population in which the true 
allele frequency is �̂k,�:

Equating Io
(
�k,�

)
 to Ie

(
�k,�

)
 and solving for ñ

�
 yields:

(6)P
(
R
(i)

�
| �k,�

)
= g

(i)

�,0

(
1−�k,�

)2
+ g

(i)

�,1
2
(
�k,�

)(
1 − �k,�

)
+ g

(i)

�,2

(
�k,�

)2
,

(7)L
(
�k,�

)
=

nk∑
i=1

log P
(
R
(i)

�
|�k,�

)
.

(8)𝜃̃k,� =

⎧⎪⎪⎨⎪⎪⎩

�𝜃k,� if 0<�𝜃k,� <1,

1

2
�
nk+1

� if �𝜃k,� =0,

1−
1

2
�
nk+1

� if �𝜃k,� =1,

(9)Io
(
�k,�

)
= −

�
2L
(
�k,�

)

��
2
k,�

||||||�k,�=�̂k,�
.

(10)

I(i)
o

�
�k,�

�
=

⎡
⎢⎢⎢⎣

2
�
g
(i)

�,0
+g

(i)

�,2
−2g

(i)

�,1

�

g
(i)

�,0

�
1− �̂k,�

�2

+g
(i)

�,1
2�̂k,�

�
1−�k,�

�
+g

(i)

�,2
�̂
2

k,�

+

⎛
⎜⎜⎜⎝

2�̂k,�

�
g
(i)

�,0
+g

(i)

�,2
−2g

(i)

�,1

�
+2

�
g
(i)

�,1
−g

(i)

�,0

�

g
(i)

�,0

�
1− �̂k,�

�2

+g
(i)

�,1
2�̂k,�

�
1− �̂k,�

�
+g

(i)

i,2
�̂
2

k,�

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦
.

(11)Ie
(
�k,�

)
=

2ñ
�

�̂k,�

(
1 − �̂k,�

) .

(12)ñ
�
=

1

2
Io
(
�k,�

)
× �̂k,�

(
1 − �̂k,�

)
.
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This is the number of diploid individuals with perfectly observed gen-
otypes that provides the same information (and hence accuracy) for 
estimating �k,� as is available from the sequencing read data from the 
nk reference samples from source population k. We term ñ

�
, calculated 

as above, the effective sample size of the read data from the reference 
samples of source population k at locus �. In practice, to avoid issues 
of non-differentiability on the boundaries of the space (i.e. at � = 0 or 
� = 1), we calculate ñ

�
 using �̃k,�. The effective sample size for a popula-

tion is then derived by taking the mean of ñl across all loci, ñ =
1

L

∑L

l=1
ñl . 

In practice, the estimates of information are highly variable for rare al-
leles; therefore, we recommend this calculation be done for loci with a 
minor allele frequency > 0.05.

Fisher information and effective sample size calculated in this 
way are useful summaries for understanding the trade-offs between 
sequencing more individuals at lower depth versus fewer individuals 
at higher depth, at least as it pertains to accurately estimating allele 
frequencies. In the context of population assignment, the effective 
sample size, in particular, provides an accessible metric for how good 
(or bad) the source-population allele frequencies can be expected to 
be. As we will see later, Fisher information also provides a valuable 
way to standardize the effective sample size of the reference sam-
ples from each population—an important consideration when using 
WGSassign. A useful statistic for accomplishing this is the individual-
specific average effective size for individual i :

where I(i)o
(
�k,�

)
 is the contribution to the observed Fisher information 

of the reads from individual i :

ñ(i) ranges between 0 and 1.
We also implement a z-score calculation for determining whether 

an individual's genotype is unlikely to have come from one of the K 
source populations, but rather, from an unsampled population. The 
full derivation of the method is shown in Appendix B. In short, we 
determine the expected distribution of log probabilities of an indi-
vidual's genotype likelihoods arising from a population (given the 
individual's allele counts across loci and the population's allele fre-
quencies), using a central limit theorem approximation. The z-score 
is then calculated by subtracting the mean expected likelihood from 
the observed likelihood and dividing the difference by the standard 
deviation of the expected likelihoods. Given that the actual distribu-
tion of the z-score is likely to deviate from a standard normal distri-
bution, we further standardize the observed z-score by the z-scores 
of the reference individuals from the source populations. Individuals 
truly from an assigned population are expected to have z-scores 
within several (e.g. three) standard deviations of the normal distri-
bution, while individuals from an unsampled but differentiated pop-
ulation are expected to have z-scores that fall below the expected 

range of a standard unit normal random variate. The determination 
of the specific standard deviation cut-off for the z-score must be 
determined from the specific empirical data.

2.3  |  Simulations to illustrate the effective 
sample size

We used the R programming language to run simulations that illus-
trate how Fisher information and effective sample size vary across 
a range of simulated read depths and true allele frequencies. Our 
simulations assumed a sample size of 100 diploid individuals and a 
single biallelic locus, with allelic types within individuals being inde-
pendent of each other.

For each individual, we simulated read depth from a Poisson dis-
tribution with mean Dave and allelic types upon each read by sampling 
from the two gene copies within the individual with equal probabil-
ity and switching the allelic type with probability 0.01 for each read 
to simulate sequencing errors. Genotype likelihoods from the reads 
were calculated according to the simulation model. We calculated 
the maximum likelihood estimate (MLE) for � from the genotype data 
as the observed proportion of alleles, and for the sequencing read 
data, we used the EM algorithm to compute the MLE. Using these 
estimates, we then computed the observed information from the 
genotypes and from the genotype likelihoods.

To determine the effective sample size, we calculated the ex-
pected information for observed genotypes, assuming the true 
value of � was the MLE from the genotype likelihoods and then used 
Equation (12).

We ran these simulations across values of Dave∈{0.1,0.5,1,2,3,4,5,

7,10,15,20,30,50} and values of � ∈ {0.01,0.05,0.10, … ,0.90,0.95,0.99}, 
simulating 50 replicate samples for each combination.

2.4  |  Genetic simulations

To demonstrate the efficacy of WGSassign in performing population 
assignment for a range of samples, read depths and genetic differ-
entiation among populations we simulated a series of genetic data 
sets using the coalescent simulation program, msprime (Kelleher 
et  al.,  2016). The first simulation included two populations, each 
with an effective sizes of 1000, exchanging migrants. We simulated 
ancestry for a genomic sequence of 108 bases with a recombination 
rate of 10−8 and a mutation rate of 10−7, per site and per generation. 
To vary the genetic differentiation between populations, we varied 
the lineage migration rate parameter between 0.0005 and 0.05 in 10 
equal increments. From both populations, we sampled 10, 50, 100 or 
500 individuals. Pairwise FST was calculated between the two popu-
lations using the sampled individuals and the genetic variants were 
output in variant call format (VCF).

With the VCF file output from msprime, we used bcftools 
(Li, 2011; Li et  al., 2009) to remove any SNPs with a minor allele 
frequency (MAF) less than 0.05 and randomly selected 100,000 
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6  |    DeSAIX et al.

of the remaining SNPs. Genotype likelihoods were produced with 
vcfgl (https://​github.​com/​isina​ltink​aya/​vcfgl​) based on mean read 
depths of 0.1X, 0.5X, 1X, 5X, 10X or 50X. For each of the 240 pa-
rameter combinations (10 migration rates, 4 sample sizes and 6 read 
depths), we simulated 10 replicates, for a total of 2400 simulated 
data sets. Genotype likelihood output was converted to Beagle file 
format with custom scripts, and we used these data as input into 
WGSassign.

To determine the influence of genetic differentiation on as-
signment accuracy, we calculated the effective sample size and 
leave-one-out (LOO) assignment accuracy for each population. In 
WGSassign, LOO is performed by iteratively removing an individual 
of known origin from its source population, calculating allele fre-
quencies within the source populations using the remaining individ-
uals and then calculating the likelihood that the removed individual 
originated from each of the different source populations. The LOO 
method is widely used to avoid the bias that arises from using train-
ing data that also include data being tested. The assigned population 
was determined by maximum likelihood.

In the second simulation, we conducted a deeper assessment of 
the behaviour of effective sample size and its influence on assign-
ment accuracy. We implemented two-population island models as 
in the previous simulation, but included all sample combinations of 
10, 30, 60 and 100 individuals for a population and read depths of 
0.5X, 0.75X, 1X, 2X, 4X and 6X with 10 replicates for a total of 5760 
simulations. We set migration rate at 0.005 for moderate genetic dif-
ferentiation based on the previous simulation. In each run, we sim-
ulated an extra 20 individuals from each of the two populations and 
these individuals were held out from allele frequency calculations 
for the respective population and used for standard assignment 
accuracy. After performing initial assignment, if a population had a 
higher effective sample size than the other population, then individ-
uals were removed to standardize the effective sample sizes, and 
assignment was performed again. In this simulation, all SNPs were 
used that had MAF > 0.05.

In the third simulation, we assessed the performance of the 
WGSassign z-score metric for determining whether an individual 
of unknown origin that is assigned to a population is actually from 
an unsampled population. We implemented a three-population 
stepping-stone model with 20, 60 or 110 individuals per population 
using msprime. We varied the migration rate parameter between 
0.0001 and 0.01 in 20 equal increments. Individuals had simulated 
mean read depths of 1X or 5X. We used populations 1 and 2 in the 
stepping-stone model as reference populations and calculated the 
reference z-scores using WGSassign from all but 10 individuals in 
these two populations. We assigned 10 individuals from population 
3 and 10 from population 2 to the reference populations (1 and 2) 
using WGSassign. We calculated the z-scores of these individuals' 
assignments to demonstrate the behaviour of the z-score metric 
for correctly assigned individuals (i.e. the individuals from popula-
tion 2 that were assigned to population 2) versus individuals from 
an unsampled population (i.e. the individuals from population 3 that 
were assigned to population 2).

Finally, to illustrate the relation of effective sample size to 
read depth and absolute sample size for the purpose of study 
design, we simulated from a two-population island-model co-
alescent to produce 10 replicates of all combinations of sam-
ple sizes in {10,12,15,20,30,60,80,120} and read depths in 
{0.5X,0.75X, 1X, 2X, 3X, 4X, 5X, 6X} for a total of 640 simulations. The 
two populations had the same number of samples and read depths, 
and the migration rate was set at 0.005. Effective sample size was 
calculated for all these replicate simulations. These values were cho-
sen such that ‘equal sequencing effort’ could be compared, in this 
case for a total sequencing depth of 60X (e.g. 120 individuals at 0.5X 
to 10 individuals at 60X).

2.5  |  Application to empirical data

We used WGSassign on data from yellow warblers to test its accuracy 
when applied to individuals from a species exhibiting isolation by dis-
tance (Bay et al., 2021; Gibbs et al., 2000). Previous work on yellow 
warblers has found weak differentiation between populations, with 
pairwise FST values on the order of 0.01 or less (Gibbs et al., 2000). 
Blood samples from 105 individuals was collected via brachial veni-
puncture in the years 2020 and 2021. These served as reference 
samples from three populations—North, Central and South—pre-
viously described in Bay et  al.  (2021) and Gibbs et  al.  (2000). We 
extracted DNA from blood using the manufacturer's protocol for 
Qiagen DNEasy Blood and Tissue Kits. Whole-genome sequenc-
ing libraries were prepared following modifications of Illumina's 
Nextera Library Preparation protocol (Schweizer & DeSaix,  2023) 
and sequenced on a HiSeq 4000 at Novogene Corporation Inc., with 
a target sequencing depth of 2X per individual.

Sequences were trimmed with TrimGalore version 0.6.5 (https://​
github.​com/​Felix​Krueg​er/​TrimG​alore​) and mapped to the NCBI 
yellow warbler reference genome (Sayers et  al.,  2022) (accession 
number JANCRA010000000) using the Burrows-Wheeler Aligner 
software version 0.7.17 (Li & Durbin, 2009). After mapping, the re-
sulting SAM files were sorted, converted to BAM files and indexed 
using Samtools version 1.9 (Li et al., 2009). We used MarkDuplicates 
from GATK version 4.1.4.0 (McKenna et al., 2010) to mark read du-
plicates and clipped overlapping reads with the clipOverlap func-
tion from bamUtil (https://​genome.​sph.​umich.​edu/​wiki/​BamUt​il:_​
clipO​verlap). To reduce sequencing depth variation, we used the 
DownsampleSam function from GATK to downsample reads from 
BAM files with greater than 2X coverage, to 2X coverage. To identify 
genetic markers from low-coverage WGS data, we used stringent 
filtering options in ANGSD version 0.9.40 (Korneliussen et al., 2014) 
of mapping quality >30 and base quality >33. We retained SNPs 
with read data in at least 50% of individuals and an MAF > 0.05. The 
genetic data are stored at https://​doi.​org/​10.​5061/​dryad.​h9w0v​t4pj 
(DeSaix et al., 2023).

We implemented principal components analysis (PCA) to ensure 
reference samples from each of our source populations actually 
showed geographic signatures of clustering in the PCA. In order to 
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assess our ability to accurately assign individuals of unknown origin 
to breeding populations, we determined the accuracy of assignment 
of the known breeding origin individuals using WGSassign's leave-
one-out approach.

For the second empirical data set, we applied WGSassign 
to previously published data from Chinook salmon (Thompson 
et al., 2020) to assess its utility in situations with low to extremely 
low read depth and poor-quality DNA. For this scenario, we enter-
tained the task of assigning Chinook salmon to either the Klamath 
River basin, or the Sacramento Basin. These populations are quite 
distinct, with pairwise FST values between the basins on the order 
of 0.1. So, it should be quite easy to distinguish fish from the two 
basins. However, in WGS data from Thompson et al. (2020), there 
were several fish from rivers in the Klamath basin collected from 
carcasses with low read depth. These fish were excluded from 
most analyses in Thompson et  al.  (2020) because they did not 
reliably cluster with other fish from their populations on a PCA; 
however, we evaluate here if their basin of origin can be recov-
ered using WGSassign. Additionally, through downsampling of 
reads from the BAM files, we investigate if average read depths as 
low as 0.001X in the sample being assigned can deliver accurate 
assignments.

We included fish from the closely related Feather River Spring, 
Feather River Fall, San Joaquin Fall and Coleman Late Fall collec-
tions as members of the Sacramento River source population, 
while fish from the closely related Salmon River Fall and Spring and 
Trinity River Fall and Spring collections constitute samples from the 
Klamath River source population. With 64 fish in each source pop-
ulation, we removed the 12 fish from each that had the fewest se-
quencing reads to serve as our 24 ‘unknown’ fish to be assigned to 
the populations. The remaining 52 in each population served as the 
reference samples.

The genotype likelihoods for the reference sample were in a VCF 
file produced by GATK. This was filtered using bcftools (Danecek 
et al., 2021) to retain only biallelic SNPs with a MAF > 0.05 which 
were missing data in fewer than 30% of the samples. Additionally, 
data from chromosome 28, which holds a region strongly differen-
tiated between spring-run and fall-run Chinook salmon (Thompson 
et al., 2020), were excluded. These genotype likelihoods were stored 
in a Beagle-formatted file using a custom script.

The data for the test samples were extracted from BAM files. 
We used samtools stats (Li et al., 2009) to determine the aver-
age read depth in each BAM and used that number with samtools 
view to downsample each BAM five times with five separate seeds 
to average read depth levels of 0.001X, 0.005X, 0.01X, 0.05X, 0.1X, 
0.5X and 1.0X, when those read depths were lower than the full read 
depth of the file. Genotype likelihoods for the 24 individuals were 
then called with ANGSD v0.940 (Korneliussen et al., 2014) using the 
-sites options to call only the sites found in the Beagle-formatted 
file of the reference samples. After genotype likelihood estimation 
in the test samples, the Beagle file of reference samples was filtered 
to include only the sites output by ANGSD. The total number sites 
in each data set was recorded, as was the number of informative 

sites (those with unequal likelihoods for the three different geno-
types) within each individual. The resulting Beagle files were then 
passed to WGSassign to compute the likelihood of population origin 
for each of the test fish, and the results were plotted using R version 
4.0 (R Core Team, 2022).

3  |  RESULTS

3.1  |  Effective sample size simulations

Fisher information and effective sample size are shown for three rep-
resentative values of � (0.05, 0.3 and 0.5) in Figure 1. As expected, 
observed Fisher information for allele frequency from sequencing 
read data increases as the average sequencing depth increases, 
reaching a limit at the observed information from fully observed 
genotypes. The absolute value of the observed Fisher information 
varies widely over the different allele frequencies; however, the 
relative values of information from genotypes and from sequencing 
reads vary less, and the effective sample size is largely consistent 
across the range of minor allele frequencies from 0.05 to 0.5, show-
ing the effective sample size to be a useful metric. The flattening 
of the curves for observed information from sequencing data as 
the average read depth increases indicates the diminishing returns 
of additional sequencing depth versus additional samples, for esti-
mating allele frequencies that has been noted previously (Buerkle & 
Gompert, 2013; Fumagalli, 2013; Lou et al., 2021).

3.2  |  Genetic simulations

In the first simulation, genetic differentiation between the sampled 
individuals from the two populations ranged from −0.003 to 0.13 
FST . Across all read depths within each category of number of sam-
ples (10, 50, 100, 500), assignment accuracy increased with genetic 
differentiation and generally high assignment accuracy was achieved 
even with low genetic differentiation (Figure  2). Accuracy above 
90% was reached for all simulations within the 500 samples cat-
egory with FST > 0.004, 100 samples category with FST > 0.006, 50 
samples category with FST > 0.015 and the 10 samples category with 
FST > 0.043. Within each sample size category, increasing average 
read depth, and therefore effective sample size, resulted in higher 
assignment accuracy, especially when populations had weak genetic 
differentiation (Figure 2).

Runtime for the simultaneous calculation of Fisher informa-
tion, effective sample size and allele frequency for populations in 
WGSassign was fast. With two populations and 100,000 loci being 
analysed in parallel with 20 threads, runtime was less than 10 s for 
populations with 100 samples or less, and between 15 and 30 s 
for populations with 500 samples. Leave-one-out assignment re-
quires population allele frequency to be recalculated for each in-
dividual in the population, and time required for that recalculation 
increases linearly with sample size. Accordingly, runtime for LOO 
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8  |    DeSAIX et al.

cross-validation is expected to increase quadratically with increasing 
number of samples per population, and we observe this: FOR 100 
samples for the two populations at 1X mean individual read depth, 
LOO assignment had a mean runtime of 51 s and, for 500 samples, 
run time was 1743 s.

The second set of simulations showed that at weak to moder-
ate genetic differentiation (mean FST = 0.0055), assignment accu-
racy was close to 100% when effective sample sizes of the two 
populations were equal and had at least eight effective individuals 
(Figure 3a). However, at higher measures of effective sample size, 
the two populations could have different effective samples sizes and 
still have high assignment accuracy (e.g. effective samples sizes of 
20 vs. 100). Assignment bias occurred when there were sufficient 
differences between the effective sample sizes that individuals were 
only being incorrectly assigned from the lower effective sample size 
population (Figure 3b).

Importantly, when effective sample size is roughly equiva-
lent between the two populations but the number of samples and 
read depth differ, assignment accuracy is still high and unbiased 
(Figure 3c,d). This pattern was apparent up through the maximum 
tested magnitude difference of 12 (Figure 3c,d).

At higher genetic differentiation (FST > 0.1), samples can readily 
be identified as coming from an unsampled population using the z-
score metric in WGSassign (Figure 4). At such high differentiation, 
individuals from an unsampled population tend to have z-scores less 
than −3 compared to individuals correctly assigned to a population 
having z-scores in ( − 3, 3), as expected of a standard unit normal. 
With weaker genetic differentiation (FST < 0.1), sample size and 
read depth have a more noticeable effect on the behaviour of the 
z-score metric (Figure  4). Generally, higher reference sample sizes 
and read depths allow individuals from unsampled populations to be 
distinctively identified from individuals that are truly from a sampled 
source population.

The simulations demonstrating the relationship of read depth and 
absolute sample size for producing effective sample size in a single 
population highlighted that prioritizing sample size over sequencing 
depth results in higher effective sample size. In the provided example 
of an equal sequencing effort of 60X (i.e. total sequencing depth of a 
single population), effective sample size increased as more samples 
at a lower read depth were used—with the lowest effective sample 
size of 7.8 for 10 individuals at 6X which increased threefold to 24.5 
for 120 individuals at 0.5X (Figure 5). In other words, if a researcher 

F I G U R E  1  (a) Observed information calculated for simulated data summarized either as fully observed genotypes (purple) or as genotype 
likelihoods (orange) computed from sequencing read data of different depths simulated from the genotypes. Fully observed genotype data 
are not affected by read depth, but an independent set of fully observed genotypes was simulated for each different value of read depth, 
and these are all shown in the figure. (b) Effective sample sizes calculated for simulated genotype likelihood data. In each figure, the facet 
headers give the true population allele frequency, the x-axis gives the average read depth in the simulations and the distribution of quantities 
in the y direction is summarized as boxplots showing the median (dark line) the first and third quartiles (the edges of the boxes) the largest 
(or smallest) value no further than 1.5× the interquartile range from the first (third) quartiles (the whiskers) and outliers beyond the whiskers 
(individual points). All simulations had 100 individuals.
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    |  9DeSAIX et al.

had the option to sequence 10 individuals at 6X from a population or 
120 individuals at 0.5X, the latter strategy would provide over three 
times as much information regarding allele frequency estimation de-
spite the same sequencing effort.

3.3  |  Application to empirical data

Variant calling with the Yellow warbler samples identified 5,301,627 
SNPs. Using all SNPs, Yellow warbler reference samples were accu-
rately assigned to either the North, Central or East populations using 
leave-one-out self-assignment. All 35 reference samples from both 
the North and East populations were assigned with 100% accuracy, 
and of the 35 birds from the Central population, 34 were correctly 
assigned.

Chinook salmon were accurately assigned to either the 
Sacramento or Klamath river basins even at read depths as low as 
0.001X (Figure  6). All 12 test samples from the Sacramento river 
were correctly assigned at all read depth levels, and, of the 12 
Klamath test fish, 11 were correctly assigned at all read depth lev-
els, while one was correctly assigned at all read depth levels except 
for one of the five replicates at read depth 0.001X. The four sam-
ples with lowest full read depth (the four at the bottom of Figure 6) 
have log-likelihood ratios that are noticeably smaller than those of 
the remaining 20 fish even when downsampled to similar read depth 
levels, suggesting that these samples suffer from factors other than 
low read depth, such as poor quality DNA or contamination. The 
number of informative sites per individual varied from 11,866 to 
906,505 at full read depth, and from 370 to 3257 at 0.001X, while 
the total number of sites varied from 955,185 at full depth to 48,220 
at 0.001X (Table 1). Evidently, at low read depths, each individual 
assignment relies on a set of informative SNPs that overlaps little 
with the informative SNPs in other individuals.

4  |  DISCUSSION

Here, we present WGSassign and demonstrate its utility for popu-
lation assignment with low-coverage WGS data. Our results, from 
both simulated and empirical data, show that low-coverage WGS 
data can be used to achieve high assignment accuracy even among 
weakly differentiated populations (FST < 0.01). We show that balanc-
ing effective sample size among populations is essential for avoiding 
assignment bias due to variation in the precision of allele frequency 
estimation for different populations. Effective sample size can also 
be used to guide decisions in study design for choosing the number 
of samples and sequencing depth in a given population. The ability 
to perform population assignment on large numbers of individuals, 
cost-effectively sequenced at low-coverage across the whole ge-
nome, further expands the utility of low-coverage WGS for popula-
tion and conservation genomics.

4.1  |  Performance of WGSassign and implications 
for population assignment studies

Our implementation of WGSassign allows users to perform popula-
tion assignment analyses from genotype likelihood data. Features 
of WGSassign include standard and leave-one-out (LOO) population 

F I G U R E  2  Each point represents a single simulation run of the 
two-population island model when effective sample sizes were 
greater than 0.1 individuals. Panels are ordered by the number 
of individuals (10, 50, 100, 500) sampled from each of the two 
populations. The proportion of correctly assigned individuals, via 
LOO cross-validation for one population is given on the y-axis and 
genetic differentiation (FST) between the two populations is on 
the x-axis. The points are coloured by effective sample size (log10 
scale) of the population. Assignment accuracy in simulation runs 
with similar genetic differentiation increases with greater effective 
sample sizes (lighter colours).
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10  |    DeSAIX et al.

assignment, as well as calculations of effective sample sizes (of both 
individuals and populations) and a z-score metric for determining 
whether an individual is from an unsampled population. Importantly, 
as implemented, these analyses can be parallelized across loci, which 
allows for fast computation of data produced from low-coverage 
WGS, even for computationally intensive applications such as LOO 

assignment. Studies of wild populations are typically limited in the 
number of samples available for sequencing, where 50 may be a 
large number of samples for a given population. With such a sam-
ple size, leave-one-out assignment at a standard low-coverage read 
depth of 1X could be expected to have a runtime on the order of 
minutes for multiple populations and a million loci.

F I G U R E  3  Mean assignment accuracy (a) and mean difference in assignment accuracy (b; assignment accuracy of population 
2 − population 1) were compared for populations with an array of effective sample sizes, listed on the axes as ranges. Equal effective 
sample sizes are along the plots' diagonals. Assignment accuracy was high when effective sample sizes were sufficiently high, even when 
unbalanced. When effective sample sizes were approximately equal, assignment accuracy was high regardless of the combination of read 
depths and number of samples (c, d). Approximately equal effective sample sizes are found along the diagonal where the axes display a range 
of the magnitude of difference for depth (y-axis) and sample size (x-axis) for population 2 in relation to population 1 (e.g. 2∕3 − 1.5x indicates 
the number of individuals in the sample from population 2 is between two-thirds and three-halves of the sample size from population 1). 
The centre tile of the plot, 2∕3 − 1.5x, indicates when effective sample size is equal due to approximately similar sample numbers and read 
depth.
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Implicit in standard population assignment tests is that there will 
always be a population with a maximum likelihood of assignment, 
even if the individual does not originate from any of the reference 
populations. To address this issue, we developed a z-score metric for 
testing whether an individual could be from an unsampled popula-
tion. The z-score is based on the individual's observed likelihood of 
assignment in relation to the expected likelihood from a hypothet-
ical individual from the same population with the same allele count 
data as the individual being tested. The z-score metric functions 
as expected at higher genetic differentiation (FST > 0.05) and with 
larger reference samples by distinguishing the majority of individu-
als incorrectly assigned as having much lower z-scores (outside the 
90% expected mass of the distribution of z-scores) than correctly 
assigned individuals. We recommend that any studies that may have 
incomplete sampling coverage of all genetically distinct populations 
test for correct assignment with the z-score metric. However, since 
this metric is limited by sample size and genetic differentiation, a 
robust approach towards using it would involve, first, observing the 
metric's behaviour by testing it upon individuals of known origin, 
calculating z-scores both for the population they are from and the 
other populations.

For high assignment accuracy, source populations need to have 
sufficient effective sample sizes in relation to genetic differentia-
tion among the populations. For example, in our simulations for low 

to moderate levels of genetic differentiation (mean FST = 0.0055), 
an effective sample size of roughly eight individuals was sufficient 
when effective sample sizes were balanced (Figure 3). If the refer-
ence populations' effective sample sizes are sufficiently high for the 
given genetic differentiation, individual samples being assigned can 
have extremely low read depth for accurate assignment. Our results 
from downsampled Chinook salmon data showed that individuals 
were still correctly assigned to populations (FST = 0.1) when individ-
ual samples had average read depths as low as 0.001X. While the 
minimum sequencing coverage needed for highly accurate popula-
tion assignment depends on genetic differentiation, this has power-
ful implications for population assignment studies, especially those 
that are conducted at a large scale. For example, in the mid-2000s, 
an arduous, international, multi-laboratory study was undertaken 
to standardize a DNA database of 13 microsatellite loci for genetic 
stock identification of Chinook salmon at a coast-wide scale (Seeb 
et al., 2007). With today's sequencing power, a low-coverage WGS 
approach could provide a cost-effective method for creating a refer-
ence baseline of known populations without the need for extensive 
standardization of genetic makers. Fish of unknown origin could be 
sequenced at very low read depth, and still be accurately assigned to 
populations from the reference baseline. Furthermore, using WGS 
data streamlines the process of adding new reference populations to 
compare to previous analyses because the loci used for assignment 

F I G U R E  4  Results from the three-population stepping stone model demonstrate the behaviour of the z-score metric in identifying 
individuals from an unsampled population (Pop3) assigned to a population in the reference compared to individuals correctly assigned to 
their source population of origin (Pop2). The column facets list the number of samples used for the reference populations while the rows are 
the population of origin and sequenng depth. Symmetric lines subtending 90%, 99% and 99.9% of the mass of a standard unit normal random 
variate are given by vertical lines (dotted, dashed and solid, respectively). In this simulation, Pop3 individuals are expected to be incorrectly 
assigned to Pop2 (since there are no Pop3 individuals in the reference set) and accordingly the z-score metric should depict this by falling 
outside the mass of the standard unit normal random variate.
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are not pre-selected to maximize genetic differentiation and thereby 
potentially subject to ascertainment bias.

We note that WGSassign can be used in conjunction with other 
clustering approaches for low-coverage WGS data (e.g. PCangsd; 
Meisner & Albrechtsen,  2018). Notably, the formal population as-
signment implemented in WGSassign requires a priori delineation 
of populations. In species that live in discrete population groups, 
this can be done without genetic data. However, when species 
are distributed more continuously, then unsupervised clustering 
approaches in tandem with geography and other covariates (e.g. 
behaviour, morphology) can be used to delineate reference popu-
lations. Assignment accuracy from WGSassign on a set of hold-out 
individuals can be used to determine if the identified populations 
are informative for assignment. The use of complementary cluster-
ing methods is also informative for identifying if test samples are 
from populations not represented in the reference samples as well as 
identifying admixed individuals. Importantly, clustering methods for 
population structure can be biased by variation in sequencing depth 
among individuals (Lou et al., 2021), while WGSassign is less influ-
enced by that variation in sequencing depth. Accordingly, WGSassign 
is expected to give more reliable assignment in the face of sequenc-
ing depth variation than unsupervised clustering approaches.

4.2  |  Accounting for population sample size and 
read depth with effective sample size

Our development of the effective sample size metric provides a pow-
erful tool for population genomics studies using low-coverage WGS 
data and informing study design. Previous studies have provided 
recommendations for the number of individuals and sequencing 
depth required to accurately estimate allele frequencies with low-
coverage WGS data (Buerkle & Gompert,  2013; Fumagalli,  2013; 
Lou et al., 2021). Effective sample size provides a metric to quantify 
these recommendations and determine the precision of allele fre-
quency estimation needed for different applications. For example, 
the recommendation of (Lou et al., 2021) at least 10 individuals with 
1X average sequencing depth for allele frequency estimation can be 
quantified as an effective sample size of 2.4 individuals in the simu-
lations from this study (Figure 5) and does correspond to sufficient 
precision to achieve accurate assignment at moderate genetic dif-
ferentiation (Figure 3). However, at weaker genetic differentiation 
among populations, effective sample size needs to be increased for 
accurate assignment. Quantifying the amount of information gain 
for different study designs can inform researchers on how to more 
efficiently allocate resources for sequencing efforts.

F I G U R E  5  The relation between read depth and number of samples in determining the effective sample size for a single population 
highlights the potential for different sampling design strategies. Notably, effective sample increases more rapidly with changes in number 
of samples than read depth. The x-axis provides the number of samples from a single population, the y-axis is the mean read depth for the 
corresponding population, and the value listed is the mean effective sample size across 10 replicate simulations using all SNPs with minor 
allele frequency > 0.05 (126,019–158,871). Tiles outlined in red have equal sequencing effort based around 60 individuals at 1X. Given the 
same amount of sequencing effort, effective sample size increases when the number of samples is prioritized over sampling depth, with a 
low of 7.8 for 10 individuals at 6X and a high of 24.5 for 120 individuals at 0.5X. Off-diagonal values allow the comparison of sampling design 
strategies of different sequencing effort, for example, sequencing 20 individuals at 1X (effective sample size = 6.1) versus sequencing 10 
individuals at 2X (effective sample size = 4.6).
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Unbalanced effective sample sizes among source populations 
can result in biased assignment of individuals to the populations 
with the highest effective sample sizes. We recommend that pop-
ulation assignment studies use the LOO assignment in WGSassign 
to determine if biased assignment is occurring. If all individuals 
across populations have similar average read depths, then subset-
ting source populations to the same number of samples for allele 

frequency calculation should remove this bias. However, different 
populations may tend to have higher or lower read depths, espe-
cially if different DNA sources are used, which will result in different 
effective sample sizes despite equal numbers of individuals. In this 
case, the individual effective sample size (Equation 13) output from 
WGSassign can be used to determine how many (and which) individ-
uals to remove from the populations with the highest effective sam-
ple sizes. Alternatively, individuals could be further downsampled to 
reduce their effective sample size, which would decrease the overall 
population's effective sample size. Studies using low-coverage WGS 
data for population assignment can explore these different strate-
gies with WGSassign to determine what is most effective for their 
data sets.

4.3  |  Further improvements for 
population assignment

Currently in our implementation of WGSassign, the issue of only a 
single allele being observed in a population, and thereby producing 
a likelihood of 0, is avoided by correcting a population with a minor 
allele frequency of 0 at a given locus to 1

2n+ 2
, where n is the number 

of individuals in the population. Essentially, this treats the locus as 
having a rare allele that would be observed in a single copy if an-
other individual was to be sampled. Another approach specifies a 
formal prior for the allele frequencies in each population (Rannala 
& Mountain, 1997). We note that the latter approach yields perfor-
mance that is very similar to ours; however, implementing a prior 
for allele frequencies that accounts for the a priori expectation 

F I G U R E  6  Log-likelihood ratios for assignment at different read depth levels for the Chinook salmon data. On the y-axis are different 
Chinook salmon samples, labelled by their population, a colon, their ID number and then in parentheses the average read depth of 
their aligned data at full depth. On the x-axis is the log-likelihood ratio in favour of assignment to their own (correct) population on a 
‘pseudo-log’ scale that accommodates negative values. Positive numbers indicate correct assignment. Colours denote the read depths 
after downsampling. There are five points for each individual at each value of downsampling, reflecting the five different seeds used for 
downsampling.
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TA B L E  1  Numbers of informative SNPs (i.e. those covered by at 
least one read, such that the genotype likelihood is not equal for all 
three genotypes) at different downsampled coverage levels of the 
Chinook salmon data.

Coverage

Within individuals

TotalMin Mean Max

Full depth 11,866 577,982 906,505 955,185

1.0X 49,432 610,137 756,970 955,155

0.5X 31,032 426,405 554,470 955,018

0.1X 31,032 159,077 195,926 884,475

0.05X 11,866 88,712 114,431 734,813

0.01X 3769 21,337 28,044 307,815

0.005X 1882 11,126 14,807 186,384

0.001X 370 2326 3257 48,220

Note: ‘Within Individuals’ gives the minimum, mean and maximum 
number of informative SNPs within any single individual across the five 
downsampled replicates. ‘Total’ refers to the total number of variant 
sites in the downsampled data set. Individuals with a full read depth less 
than one of the downsampled levels, like 1.0X, were excluded from the 
downsampled data set.
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14  |    DeSAIX et al.

that allele frequencies at a locus are expected to be similar be-
tween weakly differentiated populations (Falush et al., 2003; Pella 
& Masuda, 2006) could further improve performance of population 
assignment. In particular, we expect that it would ameliorate as-
signment bias with unequal sample sizes and also improve the dis-
tribution of posterior probabilities of assignment so that they more 
closely reflect the amount of uncertainty in each assignment. The 
parameters of these more complex prior distributions could likely 
be estimated very accurately using WGS data for use in an empirical 
Bayes approach (Maritz,  2018); however, we leave that for future 
research.
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APPENDIX A :  FISHER INFORMATION

Fisher information from genotype likelihoods
We focus on the information for the �th locus in the kth reference 
population. Accordingly, we drop the k,� subscript from � and the 
� subscript from g. Furthermore, since L(�) is a sum over the nk ref-
erence samples from k, we must simply find the derivative for the 
term in the sum corresponding to a single individual, knowing that 
the Fisher information will be the sum of that quantity over all nk 
individuals. To further ease notation, we will write Li(�) for the ith 
individual's term in the sum for L(�), while we drop the superscript (i) 
from the g's. Thus, we seek − �

2Li (�)

��
2 .
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We start by finding the first derivative:

Let

and note that

Since � log(u)∕�� = (�u∕��)u−1, we have that

Proceeding, define v and w as follows:

and note that we can rewrite �Li (�)
��

= vw, and take the derivative of that 
easily using the product rule: (vw)� = v�w + w�v. To do so, we first find 
the derivatives

Then, we put them together with the product rule

Restoring the k,� subscript to �, and the (i) superscript and � subscript 
to g, negating, taking the sum over the nk individuals and evaluating at 
the MLE yields I(i)o

(
�k,�

)
 in Equation (10).

Expected fisher information from observed genotypes
Under Hardy–Weinberg equilibrium, the allelic type of the two 
gene copies within a locus is independent of one another, and 
thus, a sample of n diploids with fully observed genotypes is 
equivalent to a sample of 2n gene copies, each one an independ-
ent Bernoulli trial with success probability �. Finding the ex-
pected Fisher information in such a case is a standard exercise, 
but we repeat it here for completeness. For a single such vari-
able Yi, we have P

(
Yi = y| �) = �

y (1−�)1−y, so the log-likelihood 
for that single observation is Li(�) = ylog� + (1 − y)log(1 − �). It 
follows that

The expected Fisher information in a single gene copy is the expecta-
tion of the negative second derivative given the true value of �:

Since information from independent variables is additive, the infor-
mation for 2n such Bernoulli variables is 2n

[
�(1−�)

]−1. Evaluating the 
expectation under the assumption that the true value of � is �̂k,� gives 
Ie
(
�k,�

)
 in Equation (11).

APPENDIX B:  Z-SCORE CALCULATION

In order to assess whether an individual A's genotype could not 
plausibly have come from one of the K source populations, even 
though it was assigned to population k, we wish to compare A's 
log read probability given that it originated from population k,  
logP

(
R(A)| �k

)
, to the distribution of log read probability values 

expected from individuals that actually are from population k.  
Complicating matters, these log read probabilities are heavily 
influenced by the read depth, and to a lesser extent, by the re-
lationship between allele depths (how many reads of each allele 
were seen) and the genotype likelihoods. So, in fact, we must 
compare logP

(
R(A)| �k

)
 to the distribution of logP

(
R| �k

)
 expected 

from an individual that originates from source k, but also has read 
depths at each locus exactly the same as individual A, and also has 
genotype likelihoods that exhibit the same relationship to allele 
depths as those in individual A (this relationship will be influenced 
by such factors as the base quality scores and the genotype likeli-
hood model used).

In previous applications, with far fewer markers, determining 
such a distribution of the log probability of the observed data 
has been done through simulation, for example, in the ‘exclusion 
method’ of Cornuet et  al.  (1999); however, with genomic-scale 
data, it would be impractical to simulate thousands of new mul-
tilocus genotypes, each with potentially millions of loci, to assess 
whether each individual (with their own, specific read depth val-
ues) might be from a population not included among the source 
populations. Instead of simulation, we develop the expected dis-
tribution of log probabilities using a central limit theorem (CLT) ap-
proximation. Note that, since P

(
R| �k

)
 is a product over many loci, 

logP
(
R| �k

)
 is a sum over loci. We will write the contribution of each 

locus to that sum as:

where we include the notation f
(
g
�
, �k,�

)
 to emphasize the fact that 

W
�
 is a deterministic function of �k,� and the vector of genotype likeli-

hoods g
�
=
(
g
�,0, g�,1, g�,2

)
. It is important to recognize in this context 

that �k,� is considered fixed while g
�
 is a random variable. By extension, 

then, so too is W
�
 a random variable. By the CLT, the sum of very many 

independent W
�
 random variables can be approximated by a normal 

distribution with mean � and variance �2 given by:

�Li(�)

��
=

�

��
log

[
g0(1−�)2 + g12�(1 − �) + g2�

2
]
.

u=g0(1−�)2+g12�(1−�)+g2�
2

=g0
(
1−2�+�

2
)
+g1

(
2�−2�2

)
+g2�

2,

�u

��
=g0(2�−2)+g1(2−4�)+g22�

=2�
(
g0+g2−2g1

)
+2

(
g1−g0

)
.

�Li(�)

��
=
(
2�

(
g0 + g2 − 2g1

)
+ 2

(
g1 − g0

))(
g0(1−�)2+g12�(1−�)+g2�

2
)−1

.

v=2�
(
gi,0+gi,2−2gi,1

)
+2

(
gi,1−gi,0

)
=
�u

��

w=
(
gi,0(1−�)2+gi,12�(1−�)+gi,2�

2
)−1

=u−1,

v� =
�v

��
=2

(
g0+g2−2g1

)

w� =
�w

��
= −u−2

�u

��
= −u−2v,

�
2Li(�)

��
2

=v�w+vw� =
v�

u
−
v2

u2

=
2
(
g0+g2−2g1

)

g0(1−�)2+g12�(1−�)+g2�
2
−

(
2�

(
g0+g2−2g1

)
+2

(
g1−g0

)

g0(1−�)2+g12�(1−�)+g2�
2

)2

.

�

��
Li(�) =

y

�
−

1 − y

1 − �
and

�
2

��
2
Li(�) = −

y

�
2
−

1 − y

(1−�)2
.

�

[
−

�
2

��
2
Li(�)

]
= �

[
y

�
2
+

1 − y

(1−�)2

]
=

1

�
+

1

1 − �
=

1

�(1 − �)
.

W
�
= log

[
g
�,0

(
1−�k,�

)2
+ g

�,12
(
�k,�

)(
1 − �k,�

)
+ g

�,2

(
�k,�

)2]
= f

(
g
�
, �k,�

)
,
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Thus, we seek �
(
W

�

)
 and Var

(
W

�

)
.

The distribution of W
�
 clearly depends on the distribution of g

�
. 

We develop such a distribution, hierarchically, based on the follow-
ing assumptions:

1.	 g
�
 depends directly on the observed allele depths. Let r

�
 be 

the number of reference alleles and a
�
 the number of alter-

nate alleles observed in the reads covering site �, and let � 
denotes an individual-specific effect of base quality scores, 
etc., on the genotype likelihoods. Then, we denote this con-
ditional probability distribution as P

(
g
�
| r

�
, a

�
, �
)
 and we will 

denote the set of values that g
�
 might take for a given pair 

(r, a) as r,a. Note that here we are asserting that given the 
allele depths, the genotype likelihood is independent of the 
genotype. This is a relatively unpalatable assumption, but we 
make it because we do not have access to the information 
we would need (knowledge of the true underlying genotypes) 
to easily relax this assumption, and it eases the computations 
considerably.

2.	 The read depths r
�
 and a

�
 depend on the genotype, G∗

�
 at locus � of 

the individual being sequenced and on a population-specific error 
rate, ϵk. The model for this is simple binomial random sampling 
from a total read depth of D

�
, with a probability �k, independently 

for each read, that the base in question will be read incorrectly. 
Hence:

where a
�
= D

�
− r

�
, always. (We note that r

�
 and D

�
 completely de-

termine a
�
, but we leave both r

�
 and a

�
 in the preceding and follow-

ing probability expressions for ease of explanation later.)
3.	 The frequency of G∗

�
 in source population k follows Hardy–

Weinberg equilibrium with an allele frequency of �k,�, so P
(
G∗
�
| �k,�

)
 

is given by Equation  (1).

With these assumptions, given the total read depth D
�
, and � and ϵk, the 

joint probability of the remaining variables is:

The mean and the variance of W
�
 can now be found from these by 

taking expectations:

As there is no documented distribution for P
(
g
�
| r

�
, a

�
, �
)
, we simply 

use the empirical distribution of g
�
 values across all loci within the in-

dividual having allele depths of r and a. In practice, values of g for any 
particular pair (r, a) are typically clustered around a single value, and 
we discretize that distribution into a histogram with a small number, b,  
of bins defined by the value of the largest of the three elements of g, 
thus imagining P

(
g
�
| r

�
, a

�
, �
)
 as a discrete distribution with weight on b 

values of g, each one the mean of the values of g within the bin. It is also 
possible to remove loci that have particularly odd values of g. For ex-
ample, GATK sometimes assigns a g

�
 of (1∕3, 1∕3, 1∕3) to loci with 

read depths r = 1, a = 0. Any such aberrant values can be removed, 
without penalty, since the � and �2 that we seek are conditioned upon 
a set of loci. The parameter ϵk might be estimable, but for now we as-
sume a value for it, like ϵk = 0.01.

After all this, a sum over the loci included in the metric gives us the 
mean and variance of the normal distribution that the log genotype 
probabilities of a matched individual (same loci, same read depths, 
same relationship between allele depths and g) from population k 
would be expected to have:

where �
�
= 1 if the locus � was included in the calculation, and 0 oth-

erwise. Thus, the variable

should, by the CLT, have a normal distribution with mean 0 and vari-
ance 1.

Of course, there are several reasons why the actual distribution 
of z(A)

k
 might depart from a Normal(0, 1): Our calculations for the 

mean and variance of each locus are unlikely to be perfectly reli-
able, the rate of sequencing error might be higher or lower than 
we assume, or there might be genetic structure within population 
k, and hence also within the reference samples from population k.  

�=

L∑
�=1

�
(
W

�

)

�
2=

L∑
�=1

Var
(
W

�

)
.

P
�
r
�
, a

�
�G∗

�
,D

�

�
=

D
�
!

r
�
!a

�
!
×

⎧
⎪⎪⎨⎪⎪⎩

�
1−ϵk

�r
ϵ
a
�

k
if G∗

�
=0

(1∕2)D� if G∗
�
=1

ϵ
r
�

k

�
1−ϵk

�a
� if G∗

�
=2,

P
(
G∗
�
, r

�
, a

�
, g

�
| �k,� ,D�

, � , ϵk
)
= P

(
G∗
�
| �k,�

)
P
(
r
�
, a

�
|G∗

�
,D

�

)
P
(
g
�
| r

�
, a

�
, �
)
.

�
[
W

�
| �k,� ,D�

, � , ϵk
]
=W

�
=

2∑
G=0

∑

(r, a):

r+a=D
�

∑
g∈r,a

f
(
g
�
=g, �k,�

)
P
(
G∗
�
=G, r

�
= r, a

�
=a, g

�
=g| �k,� ,D�

, � , ϵk
)

Var
[
W

�
| �k,� ,D�

, � , ϵk
]
=

2∑
G=0

∑

(r, a):

r+a=D
�

∑
g∈r,a

[
W

�
− f

(
g
�
=g, �k,�

)]2
P
(
G∗
�
=G, r

�
= r, a

�
=a, g

�
=g | �k,� ,D�

, � , ϵk
)
.

�=

L∑
�=1

�
�
�
[
W

�
| �k,� ,D�

, � , ϵk
]

�
2=

L∑
�=1

�
�
Var

[
W

�
| �k,� ,D�

, � , ϵk
]
,

z
(A)

k
=

logP
(
R(A)| �k

)
− �

�
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Thus, we correct the z-score so that it exhibits a mean of 0 and a 
variance of 1 for the reference samples, themselves, from popula-
tion k. With i = 1, … , nk denoting the reference samples from popu-
lation k, we calculate

Then, we assess whether an unknown individual A assigned to popula-
tion k may have come from an unsampled population using:

As in the likelihoods calculated by WGSassign, values of �̃k,� 
are used in place of values of �k,� in all of the above calculations. 
Furthermore, when calculating the z scores for each individual from 
the reference samples, the value of �k,� used must be one estimated 
while leaving the individual out of the sample (analogous to the LOO 
procedure described in the paper).

zk =
1

nk

nk∑
i=1

z
(i)

k
and �

2
k
=

1

nk − 1

nk∑
i=1

(
z
(i)

k
−zk

)2

.

z
∗(A)

k
=

z
(A)

k
− zk

�2
k

.
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